Energy and Exergy Analysis of the S-CO2 Brayton Cycle Coupled with Bottoming Cycles
نویسندگان
چکیده
منابع مشابه
Thermoeconomic optimization and exergy analysis of transcritical CO2 refrigeration cycle with an ejector
The purpose of this research is to investigate thermoeconomic optimization and exergy analysis of transcritical CO2 refrigeration cycle with an ejector. After modeling thermodynamic equations of elements and considering optimization parameters of emerging temperature of gas of cooler (Tgc) , emerging pressure of cooler's gas (Pgc) , and eva...
متن کاملCombined-cycle solarised gas turbine with steam, organic and CO2 bottoming cycles
Dish concentrators permit the collection of very high-temperature heat, at temperatures limited only by the properties of the containment vessel material. Using this heat efficiently is a major challenge in the design of energy conversion systems for dish concentrators: the heat must be used either immediately on the dish, or else transported, with losses, to a remote energy conversion device. ...
متن کاملThermoeconomic optimization and exergy analysis of transcritical CO2 refrigeration cycle with an ejector
The purpose of this research is to investigate thermoeconomic optimization and exergy analysis of transcritical CO2 refrigeration cycle with an ejector. After modeling thermodynamic equations of elements and considering optimization parameters of emerging temperature of gas of cooler (Tgc) , emerging pressure of cooler's gas (Pgc) , and eva...
متن کاملExergy Analysis and Second Law Efficiency of a Regenerative Brayton Cycle with Isothermal Heat Addition
The effect of two heat additions, rather than one, in a gas turbine engine is analyzed from the second law of thermodynamics point of view. A regenerative Brayton cycle model is used for this study, and compared with other models of Brayton cycle. All fluid friction losses in the compressor and turbine are quantified by an isentropic efficiency term. The effect of pressure ratio, turbine inlet ...
متن کاملthermoeconomic optimization and exergy analysis of transcritical co2 refrigeration cycle with an ejector
the purpose of this research is to investigate thermoeconomic optimization and exergy analysis of transcritical co2 refrigeration cycle with an ejector. after modeling thermodynamic equations of elements and considering optimization parameters of emerging temperature of gas of cooler (tgc) , emerging pressure of cooler's gas (pgc) , and evaporative temperature (tevp) , optimization of targ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Processes
سال: 2018
ISSN: 2227-9717
DOI: 10.3390/pr6090153